Thursday, 11 January 2018

स्थानांतरण - औसत - प्रक्रिया


मूविंग एवरेज - एमए। 4. डाउन मूविंग एवरेज - एमए। एसएमए उदाहरण के रूप में, 15 दिनों में निम्नलिखित समापन कीमतों के साथ सुरक्षा पर विचार करें। सप्ताह 1 5 दिन 20, 22, 24, 25, 23। वीक 2 5 दिन 26, 28 , 26, 29, 27.Week 3 5 दिन 28, 30, 27, 29, 28. एक 10-दिन एमए पहले डेटा बिंदु के रूप में पहले 10 दिनों के लिए समापन कीमतों का औसत होगा अगले डेटा बिंदु जल्द से जल्द छोड़ देंगे कीमत, दिन 11 पर कीमत जोड़ते हैं और औसत लेते हैं, और इसी तरह नीचे दिखाए गए हैं। जैसा कि पहले लिखा गया है, एमए की वर्तमान कीमत कार्रवाई क्योंकि वे पिछले कीमतों पर आधारित हैं, एमए के लिए समय अवधि, अधिक से अधिक अंतराल एक 200 दिवसीय एमए में 20-दिवसीय एमए की तुलना में काफी अधिक अंतर होगा क्योंकि इसमें पिछले 200 दिनों के लिए कीमतें शामिल हैं एमए का उपयोग करने के लिए व्यापारिक उद्देश्यों पर निर्भर करता है, अल्पकालिक व्यापार के लिए इस्तेमाल होने वाले कम एमए के साथ और दीर्घकालिक एमए लंबे समय तक निवेशकों के लिए अधिक उपयुक्त 200-दिन एमए व्यापक रूप से निवेशकों और व्यापारियों द्वारा पीछा किया जाता है, इस चलती औसत कज़ी के ऊपर और नीचे के ब्रेक के साथ महत्वपूर्ण व्यापारिक संकेत होने के लिए महत्वपूर्ण हैं। एमए अपने दम पर महत्वपूर्ण व्यापार संकेतों को भी प्रदान करते हैं, या जब बढ़ते एमए से दो औसत पार हो जाते हैं, तो यह संकेत मिलता है कि सुरक्षा एक अपट्रेंड में है, जबकि गिरावट आई एमए इंगित करता है कि यह डाउनटेन्ड में है इसी तरह, ऊपर की गति एक तेजी से क्रॉसओवर के साथ पुष्टि की जाती है, जो तब होती है जब एक अल्पावधि एमए नीचे एक लंबी अवधि के एमए डाउनवर्ड गति से ऊपर की ओर बढ़ जाती है, जो एक मंदी के क्रॉसओवर के साथ पुष्टि की जाती है, जो तब होता है जब एक अल्पावधि एमए लंबी अवधि के एमए -2 1 औसत मॉडलिंग चल रहा है एमए मॉडल। एआरआईएए मॉडल के रूप में जाना जाता समय श्रृंखला मॉडल autoregressive शर्तों और या तो औसत शब्दों में चल सकते हैं सप्ताह 1 में, हम चर के लिए एक समय श्रृंखला मॉडल में एक शब्द autoregressive शब्द सीखते हैं xt उदाहरण के लिए, एक अंतराल 1 autoregressive अवधि एक गुणांक द्वारा गुणा किया जाता है यह सबक चलती हुई औसत शर्तों को परिभाषित करता है। समय श्रृंखला मॉडल में चलती औसत अवधि एक गुणांक द्वारा गुणा की गई एक पिछली त्रुटि है। लेफ्ट वाफ्ट ओवरेट एन 0, सिग्मा 2 डब्ल्यू, जिसका अर्थ है कि समान रूप से, स्वतंत्र रूप से वितरित किए जाते हैं, प्रत्येक को सामान्य वितरण के साथ 0 और समान विचरण होता है। एमए 1 द्वारा दर्शाए गए औसत मॉडल को ले जाने वाले 1 वां क्रम है। xt म्यू wt theta1w। एमए 2 द्वारा चिह्नित औसत मॉडल, चलती 2 नयी क्रम है। xt म्यू wt theta1w theta2w। क्यू वें क्रम औसत मॉडल हिल, एमए क्यू द्वारा निरूपित है। कई पाठ्यपुस्तकों और सॉफ्टवेयर प्रोग्राम मॉडल के पहले नकारात्मक संकेतों के साथ मॉडल को परिभाषित करते हैं यह मॉडल के सामान्य सैद्धांतिक गुणों को परिवर्तित नहीं करता है, हालांकि यह अनुमानित गुणांक मानों के बीजीय संकेत को फ्लिप करता है और अनिर्धारित शर्तों में एसीएफ और वैरिएन्स के लिए फ़ार्मुलों आपको यह सत्यापित करने के लिए अपने सॉफ़्टवेयर की जांच करने की आवश्यकता है कि नकारात्मक या सकारात्मक संकेतों का इस्तेमाल सही ढंग से लिखने के लिए किया गया है ताकि अनुमानित मॉडल आर अपने अंतर्निहित मॉडल में सकारात्मक संकेतों का उपयोग कर सकें, जैसा कि हम यहां करते हैं। एक समय श्रृंखला के सैद्धांतिक गुण एक एमए 1 मॉडल। नोट करें कि सैद्धांतिक एसीएफ में केवल नोजेरो वैल्यू अंतराल के लिए है 1 सभी अन्य autocorrelations 0 हैं इसलिए इस तरह एक महत्वपूर्ण autocorrelation के साथ एक नमूना एसीएफ 1 अंतराल पर संभव एमए 1 मॉडल का सूचक है। इच्छुक छात्रों के लिए, इन गुणों के सबूत इस हैंडआउट के लिए एक परिशिष्ट हैं। उदाहरण 1 मान लीजिए कि एक एमए 1 मॉडल एक्सटी 10 wt 7 w t-1 है जहां wt overset N 0,1 इस प्रकार गुणांक 1 0 7 गु ई सैद्धांतिक एसीएफ द्वारा दिया जाता है। इस एसीएफ के एक भूखंड के अनुसार। साजिश सिर्फ दिखाया गया है 1 1 7 7 के साथ 1 एमए 1 के लिए सैद्धांतिक एसीएफ है, एक नमूना आम तौर पर ऐसे स्पष्ट पैटर्न को आर का उपयोग करते हुए प्रदान करता है, हम नकली n 100 नमूना मूल्य मॉडल का उपयोग करते हुए 10 x 7 w t-1 जहां w t. iid N 0,1 इस अनुकरण के लिए, नमूना डेटा का एक समय श्रृंखला की साजिश के बाद हम इस साजिश से बहुत कुछ नहीं बता सकते हैं। नमूना के लिए नमूना ACF डेटा निम्नानुसार है, हम अंतराल 1 पर एक स्पाइक देख रहे हैं, इसके बाद सामान्यत: गैर-महत्वपूर्ण मानों के लिए पिछला 1 ध्यान दें कि नमूना एसीएफ अंतर्निहित एमए 1 के सैद्धांतिक पैटर्न से मेल नहीं खाता है, जो कि पिछले 1 के सभी ऑटोकोएरेलेशन के लिए 0 ए अलग-अलग नमूने में नीचे दिखाए गए एक अलग नमूने एसीएफ होगा, लेकिन संभवतः एक ही व्यापक विशेषताएं हैं। एक एमए 2 मॉडल के साथ एक टाइम सीरीज़ का सैद्धांतिक गुण। एमए 2 मॉडल के लिए, सैद्धांतिक गुण निम्नलिखित हैं। नोट करें कि केवल नोजेरोओ सैद्धांतिक एसीएफ में मूल्यों के लिए 1 और 2 ऑटोकॉररलैट लेटे हैं उच्च गड़बड़ियों के लिए आयन 0 हैं, इसलिए 1 और 2 की गिनती पर महत्वपूर्ण autocorrelations के साथ एक नमूना एसीएफ, लेकिन उच्च गलतियों के लिए गैर-महत्वपूर्ण autocorrelations एक संभावित एमए 2 मॉडल इंगित करता है। आईआईडी एन 0,1 गुणांक 1 0 और 2 0 3 चूंकि यह एक एमए 2 है, सैद्धांतिक एसीएफ में केवल 1 और 2 के स्तर पर नोजरोज्य मूल्य होंगे। सैद्धांतिक एसीएफ के एक भूखंड निम्नलिखित हैं। लगभग हमेशा मामला होता है, नमूना डेटा जीने में काफी मायने रखता है तो पूरी तरह से सिद्धांत के रूप में हम नमूने के लिए 150 नमूना मूल्य मॉडल xt 10 wt 5 w t-1 3 w t-2 जहां w t. iid N 0,1 डेटा श्रृंखला का समय श्रृंखला प्लॉट निम्नानुसार है: एमए 1 नमूना डेटा, आप इसके बारे में ज्यादा नहीं बता सकते हैं। नकली डेटा के लिए नमूना एसीएफ निम्न प्रकार की स्थितियों के लिए विशिष्ट है, जहां एक एमए 2 मॉडल उपयोगी हो सकता है दो आंकड़े महत्वपूर्ण रूप से महत्वपूर्ण हैं जो 1 और 2 के पीछे हैं अन्य लैगों के लिए महत्वपूर्ण मान ध्यान दें कि नमूनाकरण त्रुटि के कारण, नमूना ACF से मिलान नहीं हुआ सैद्धांतिक पैटर्न बिल्कुल. एसीएफ सामान्य एमए क्यू मॉडल के लिए. सामान्य रूप से एमए क्यू मॉडलों की एक संपत्ति यह है कि पहली क्ष लीग के लिए नोजरियो ऑटोोक्रैरेलेशन और सभी लगी घड़ियों के लिए 0 स्वायत्तताएं हैं। 1 और rho1 के मूल्यों के बीच कनेक्शन की अद्वितीयता एमए 1 मॉडल में एमए 1 मॉडल में, 1 के किसी भी मूल्य के लिए पारस्परिक 1 1 के लिए एक ही मूल्य देता है। उदाहरण के लिए, 1 के लिए 0 का उपयोग करें और 1 का उपयोग करें 1 0 2 2 के लिए 1 आप rho1 0 4 प्राप्त करेंगे दोनों उदाहरणों में। एक सैद्धांतिक प्रतिबंध को संतुष्ट करने के लिए उल्लिखित कहा गया है, हम एमए 1 मॉडल को 1 से कम से कम मूल्य के साथ मूल्य रखने के लिए प्रतिबंधित करते हैं। सिर्फ उदाहरण दिए गए उदाहरण में, 1 0 5 एक मान्य पैरामीटर मूल्य होगा, जबकि 1 1 0 5 2 नहीं होगा। एमए मॉडल की अनुपलब्धता। एक एमए मॉडल को उलटा होना कहा जाता है, यदि यह एक समन्वित असीम ऑर्डर एआर मॉडल के बराबर है, तो हम इसका मतलब यह है कि एआर गुणांक 0 से कम हो जाते हैं जैसा कि हम समय पर वापस जाते हैं। अनदेखी एक क्रमादेशित प्रोग्राम है समय श्रृंखला सॉफ्टवेयर coeff अनुमान लगाने के लिए इस्तेमाल किया एमए पदों के साथ मॉडल के आईसीएन्ट्स यह डेटा विश्लेषण में कुछ नहीं है, यह एमए 1 मॉडल के लिए अपरिवर्तनीय प्रतिबंध के बारे में अतिरिक्त जानकारी दी गई है। परिशिष्ट में दिया गया एडवांस थ्योरी नोट एक निर्दिष्ट एसीएफ के साथ एमए क्वालिटी मॉडल के लिए, केवल एक अपरिवर्तनीय मॉडल अनुपस्थिति के लिए आवश्यक शर्त यह है कि गुणांक के मूल्य ऐसे हैं, जैसे समीकरण 1- 1 y-- qyq 0 में y के लिए समाधान होते हैं जो यूनिट सर्कल के बाहर होते हैं। उदाहरण के लिए कोड। उदाहरण 1 में, हमने मॉडल के सैद्धांतिक एसीएफ 10 वेट 7 व टी -1 और फिर इस मॉडल से सिम्युटेड एन 150 वैल्यू और सैमेटेड डेटा के लिए सैम्पल टाइम सीरीज़ और नमूना एसीएफ का सैद्धांतिक एसीएफ़ साजिश करने के लिए इस्तेमाल किए गए आर कमांड थे। एफ़फमा 1 एआरमाएक्फ मा सी 0 7, एमए 1 के लिए 1 एटीएटी के साथ 10 एटीएक्स की वजह से आईटीए 1 0 7 लेट्स 10 10 में एक वेरिएबल नाम दिया गया है जो कि लगी है जो कि 0 से 10 प्लॉट लग्ज, एसीएफएमए 1, एक्सली सी 1,10, वाईलाब आर, टाइप एच, एमए 1 के लिए मुख्य एसीएफ withta1 0 7 abline h 0 साजिश में एक क्षैतिज अक्ष जोड़ता है ई पहले कमांड एसीएफ को निर्धारित करता है और इसे एक्टिफा 1 नामक एक ऑब्जेक्ट में नामित करता है जिसे नाम दिया जाता है। प्लॉट कमांड को 3 कमांड प्लॉट्स को एसीएफ वैल्यू बनाम एग्.एफ़ वैल्यू के लिए 1 से 10 की लंबाई के लिए खड़ा होता है ylab पैरामीटर y - अक्ष को लेबल करता है और मुख्य पैरामीटर साजिश पर खिताब। एसीएफ के संख्यात्मक मूल्यों को देखने के लिए बस acfma1 कमांड का उपयोग करें। सिमुलेशन और भूखंड निम्नलिखित कमानों के साथ किए गए थे सूची मा सी 0 7 एमए 1 x एक्ससी 10 से एन 150 मूल्यों को सिम्युलेट करता है 10 मतलब बनाने के लिए 10 सिमुलेशन का मतलब 0 प्लॉट एक्स, टाइप बी, मुख्य सिम्युटेड एमए 1 डेटा एसीएफ एक्स, एक्सली सी 1,10, सिम्युलेटेड नमूना डेटा.उदाहरण 2 में, हमने इस मॉडल के सैद्धांतिक एसीएफ का नमूना बना दिया है, मॉडल 10 ्टीटी 5 डब्लू टी -1 3 डब्लू टी -2 और फिर इस मॉडल से सिम्युटेड एन 150 वैल्यू लगाया और सैम्यूलेट के लिए नमूना समय श्रृंखला और नमूना एसीएफ लगाई। डेटा का उपयोग किया गया आर कमांड थे। एफ़फा 2 एआरमाएक्फ मा सी 0,0,0,0, एसीएमटीए 2 लेट्स 0 10 प्लॉट लेट्स, एसीएफएमए 2, एक्सली सी 1,10, एलएलआर आर, टाइप एच, एमए 2 के लिए मुख्य एसीएफ थीटा 1 0 5, थेटा 2 0 3 abline h 0 list ma c 0 5, 0 3 x xc 10 प्लॉट x, टाइप बी, मुख्य सिम्युटेड एमए 2 सीरीज़ एक्सएफ एक्स, एक्सली सी 1,10, सिम्युलेटेड एमए 2 डेटा के लिए मुख्य एसीएफ. एपेंडिक्स एमए 1 के गुणों का सबूत दिलचस्पी छात्रों के लिए, यहां एमए 1 मॉडल के सैद्धांतिक गुणों के प्रमाण हैं। वेरिएंस पाठ xt टेक्स्ट म्यू वेट थिटे 1 डब्ल्यू 0 टेक्स्ट डब्ल्यूटी टेक्स्ट थीटा 1 वी सिग्मा 2 ड्वेटाइट 21 सिग्मा 2 डब्ल्यू 1 थीटा 21 सिग्मा 2 वा। जब 1 एच, पिछला एक्सप्रेशन 1 किसी भी एच 2 के लिए w 2 , पिछले अभिव्यक्ति 0 कारण यह है कि, किसी भी kj आगे के लिए wt ई wkwj 0 की आजादी की परिभाषा के कारण, क्योंकि wt का मतलब 0, ई wjwj ई wj 2 w 2. एक समय श्रृंखला के लिए। इस परिणाम प्राप्त करने के लिए लागू करें एसीएफ ऊपर दिया गया। एक अवरवरित एमए मॉडल वह है जिसे एक अनंत ऑर्डर एआर मॉडल के रूप में लिखा जा सकता है, जिससे एआर गुणांक 0 तक पहुंच जाता है, जैसा कि हम अनंत समय पर वापस जाते हैं हम एमए 1 मॉडल के लिए अपरिवर्तनीय दिखेंगे। फिर समीकरण में w t-1 के लिए विकल्प रिश्ते 2। 3 जीटी वाइटी theta1 z - theta1w wt theta1z - थीटा 2w। समय टी 2 समीकरण 2 हो जाता है। फिर हम समीकरण में w t-2 के लिए रिश्ते 4 का स्थान 3. zt wt theta1 z - थीटा 21w wt theta1z - थीटा 21 z - theta1w wt theta1z - theta1 2z थीटा 31w। अगर हम असीम रूप से जारी रहेगा, तो हम अनंत ऑर्डर एआर मॉडल प्राप्त करेंगे। zt wt theta1 z - थीटा 21z थीटा 31z - थीटा 41z डॉट्स। हालांकि, अगर 1 1, गुणांकों को z के लगी गुणा करने के लिए आकार में असीम रूप से बढ़ेगा जैसा कि हम समय में आगे बढ़ते हैं इसे रोकने के लिए, हमें 1 1 की आवश्यकता है एक अतुलनीय एमए 1 मॉडल के लिए शर्त। अनन्त ऑर्डर एमए मॉडल। 3 सप्ताह में, हम देखेंगे कि एआर 1 मॉडल को एक अनंत ऑर्डर एमए मॉडल में बदला जा सकता है। xt-mu wt ph1 1f phi 21w डॉट्स phi k1 w डॉट्स राशि phi j1w। पिछले श्वेत शोर शब्दों का यह सार एआर 1 के कारण का प्रतिनिधित्व के रूप में जाना जाता है, दूसरे शब्दों में, xt एक विशेष प्रकार का एमए है, जिसमें अनंत संख्या समय पर वापस जाना यह एक अनंत आदेश एमए या एमए एक कमानिक आदेश एमए कहा जाता है एक अनंत आदेश एआर और किसी भी परिमाण आदेश एआर एक अनंत आदेश एमए है। 1 सप्ताह पहले, हमने उल्लेख किया कि एक स्थिर एआर 1 के लिए एक आवश्यकता यह है कि 1 1 चलिए प्रस्तुति का प्रतिनिधित्व करते हुए वार xt की गणना करते हैं.इस अंतिम चरण में ज्यामितीय श्रृंखला के बारे में मूल तथ्य का उपयोग किया गया है, जिसके लिए phi1 1 की आवश्यकता होती है अन्यथा सीरीज अलग हो जाती है। औसत औसत। यह उदाहरण आपको सिखाता है कि कैसे एक समय श्रृंखला एक्सेल एक चलती औसत का उपयोग रुझानों को आसानी से पहचानने के लिए अनियमितताएं और घाटियों को सुचारू रूप से करने के लिए किया जाता है। पहला, हमारे समय की श्रृंखला पर एक नज़र डालें। डेटा टैब पर, डेटा विश्लेषण पर क्लिक करें। नोट डेटा विश्लेषण बटन को नहीं मिल सकता है यहाँ विश्लेषण ToolPak ऐड-इन.3 लोड करने के लिए औसत चलते हुए चुनाव करें और ठीक क्लिक करें। 4 इनपुट रेंज बॉक्स में क्लिक करें और सीमा B2 M2.5 का चयन करें अंतराल बॉक्स में क्लिक करें और टाइप करें 6.6 आउटपुट रेंज बॉक्स में क्लिक करें और सेल का चयन करें B3.8 इन मानों का एक ग्राफ़ प्लॉट करें। क्योंकि हम अंतराल को 6 तक सेट करते हैं, चल औसत औसत पिछले 5 डेटा बिंदुओं की औसत और वर्तमान डेटा बिंदु है नतीजतन, चोटियों और घाटियों को सुखाया जाता है ग्राफ बढ़ती प्रवृत्ति को दर्शाता है एक्सेल पहले की चलती औसत की गणना नहीं कर सकता 5 आंकड़ों के मुताबिक, पिछले आंकड़ों के मुकाबले पर्याप्त नहीं हैं। 9 अंतराल 2 और अंतराल के लिए चरण 2 से 8 दोहराएं। समापन बड़ा अंतराल, अधिक चोटियों और घाटियों को कम किया जाता है छोटे अंतराल, चलती औसत करीब वास्तविक डेटा बिंदुओं के लिए हैं

No comments:

Post a Comment